Subcomponents and Connectivity of the Inferior Fronto-Occipital Fasciculus Revealed by Diffusion Spectrum Imaging Fiber Tracking
نویسندگان
چکیده
The definitive structure and functional role of the inferior fronto-occipital fasciculus (IFOF) are still controversial. In this study, we aimed to investigate the connectivity, asymmetry, and segmentation patterns of this bundle. High angular diffusion spectrum imaging (DSI) analysis was performed on 10 healthy adults and a 90-subject DSI template (NTU-90 Atlas). In addition, a new tractography approach based on the anatomic subregions and two regions of interest (ROI) was evaluated for the fiber reconstructions. More widespread anterior-posterior connections than previous "standard" definition of the IFOF were found. This distinct pathway demonstrated a greater inter-subjects connective variability with a maximum of 40% overlap in its central part. The statistical results revealed no asymmetry between the left and right hemispheres and no significant differences existed in distributions of the IFOF according to sex. In addition, five subcomponents within the IFOF were identified according to the frontal areas of originations. As the subcomponents passed through the anterior floor of the external capsule, the fibers radiated to the posterior terminations. The most common connection patterns of the subcomponents were as follows: IFOF-I, from frontal polar cortex to occipital pole, inferior occipital lobe, middle occipital lobe, superior occipital lobe, and pericalcarine; IFOF-II, from orbito-frontal cortex to occipital pole, inferior occipital lobe, middle occipital lobe, superior occipital lobe, and pericalcarine; IFOF-III, from inferior frontal gyrus to inferior occipital lobe, middle occipital lobe, superior occipital lobe, occipital pole, and pericalcarine; IFOF-IV, from middle frontal gyrus to occipital pole, and inferior occipital lobe; IFOF-V, from superior frontal gyrus to occipital pole, inferior occipital lobe, and middle occipital lobe. Our work demonstrates the feasibility of high resolution diffusion tensor tractography with sufficient sensitivity to elucidate more anatomical details of the IFOF. And we provides a new framework for subdividing the IFOF for better understanding its functional role in the human brain.
منابع مشابه
Evaluation of Diffusion-Tensor Imaging-Based Global Search and Tractography for Tumor Surgery Close to the Language System
Pre-operative planning and intra-operative guidance in neurosurgery require detailed information about the location of functional areas and their anatomo-functional connectivity. In particular, regarding the language system, post-operative deficits such as aphasia can be avoided. By combining functional magnetic resonance imaging and diffusion tensor imaging, the connectivity between functional...
متن کاملEvidence of a middle longitudinal fasciculus in the human brain from fiber dissection
A rostrocaudal pathway connecting the temporal and parietal lobes was described in monkeys using autoradiography and was named the middle longitudinal fasciculus (MdLF). Recently, the use of diffusion tensor tractography has allowed it to be depicted in human volunteers. In the present study, a technique of fiber dissection was used in 18 cadaveric human brains to investigate the presence of th...
متن کاملWhite matter and reading deficits after pediatric traumatic brain injury: A diffusion tensor imaging study
Pediatric traumatic brain injury often results in significant long-term deficits in mastery of reading ability. This study aimed to identify white matter pathways that, when damaged, predicted reading deficits in children. Based on the dual-route model of word reading, we predicted that integrity of the inferior fronto-occipital fasciculus would be related to performance in sight word identific...
متن کاملQ-Ball of Inferior Fronto-Occipital Fasciculus and Beyond
The inferior fronto-occipital fasciculus (IFOF) is historically described as the longest associative bundle in the human brain and it connects various parts of the occipital cortex, temporo-basal area and the superior parietal lobule to the frontal lobe through the external/extreme capsule complex. The exact functional role and the detailed anatomical definition of the IFOF are still under deba...
متن کاملHuman subinsular asymmetry studied by diffusion tensor imaging and fiber tracking.
BACKGROUND AND PURPOSE Our aim was to improve our understanding of the subinsular white matter microstructural asymmetries in healthy right-handed subjects. Structural brain asymmetries could be related to functional asymmetries such as hemisphere language dominance or handedness. Besides the known gray matter asymmetries, white matter asymmetries could also play a key role in the understanding...
متن کامل